Acetyl-α-Tubulin (Lys40) Rabbit mAb

Catalog No.: F0620

  • Lane 1: Hela(acetylpeptide blocking)
    Lane 2: Hela (non-acetylpeptide blocking)
    Lane 3: Hela (TSA-treated , 400 nM, 16 hrs; acetylpeptide blocking)
    Lane 4: Hela (TSA-treated , 400 nM, 16 hrs; non-acetylpeptide blocking)
サイズ (液体) 価格(税別) 在庫状況
JPY 19800 お問い合わせ
JPY 49500 国内在庫なし(納期7~10日)
JPY 74200 お問い合わせ

代表番号: 045-509-1970|電子メール:sales@selleck.co.jp
よく尋ねられる質問

キーポイント

タンパク質の局在:細胞質,細胞骨格,微小管
WB
RIPA/NP-40 Lysis Buffer バッファーでのライセート調製を推奨します。

使用情報

Dilution
1:1000
1:800 - 1:1600
1:200 - 1:800
Application
WB, IP, IF, FCM
Source
Rabbit
Reactivity
Human, Mouse, Rat, Monkey, Zebrafish
Storage Buffer
PBS, pH 7.2+50% Glycerol+0.05% BSA+0.01% NaN₃
Storage (from the date of receipt)
–20°C (avoid freeze-thaw cycles), 2 years
Predicted MW
52 kDa
ポジティブコントロール Rat testes; Hela (TSA, 400nM, 16h); Hela (TSA, 1μM, 18h); MCF10a (serum-starved, 24h)
ネガティブコントロール

サンプル処理データの例

サンプル 処理状況
Hela TSA (400 nM, 16 h)
Hela TSA (1 μM, 18 h)
MCF10a Serum starvation, 24h
クリックして、さらに多くのサンプルデータを表示

*異なるヒト由来細胞や組織における発現量の予測については、以下をご参照ください: http://www.proteinatlas.org

プロトコール

WB
Western Blotting
 
Sample preparation
 
1. Aspirate media from cultures and Wash the cells with 1X PBS.
2. Lyse cells by adding 1X SDS sample buffer and transfer the extract to a microcentrifuge tube. Keep onice.
3. Sonicate for 10–15 sec to complete cell lysis and shear DNA.
4. Heat a 20 µl sample to 95–100°C for 5 min, then cool on ice.
5. Centrifuge for 5 min (with Microcentrifuge).
6. Load appropriate volumes of samples onto SDS-PAGE gel (loading quantity of protein sample depends on the concentration of extracted proteins).
NOTE: At the same time, please load the pre-stained molecular weight markers to determine molecular weights and verify electrotransfer.
7. Electrotransfer to nitrocellulose/PVDF membrane (For wet transfer: 150mA 120min).
 
Membrane Blocking and Antibody Incubations
 
a. Blocking
 
1. (Optional) After transfer, wash the transferred membrane with TBS for 5 min at room temperature.
2. Incubate the membrane in the blocking buffer for 1 hr at room temperature.
3. Wash three times for 5 min each with TBST.
 
b. Antibodies Incubation
 
1. Incubate membrane and primary antibody (at the appropriate dilution and diluent recommended) in a primary antibody dilution buffer with gentle agitation overnight at 4°C.
2. Wash three times for 5 min each with TBST.
3. Incubate membrane with an appropriate second antibodydissolved in the blocking buffer with gentle agitation for 1 hr at room temperature.
4. Wash three times for 5 min each with TBST.
5. Proceed with detection.
 
Detection of Proteins
 
1. After antibodies incubation, Wash membrane three times for 5 minutes in TBST.
2. PrepareECL Reagent (or other chromogenic agents/substrate according to your second antibody). Mix well.
3. Incubate substrate with membrane for 1 minute, remove excess solution (membrane remains wet), wrap in plastic and expose in the imaging system.
WB
Experimental Protocol:
 
Sample preparation
1. Tissue: Lyse the tissue sample by adding an appropriate volume of ice-cold RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail),and homogenize the tissue at a low temperature.
2. Adherent cell: Aspirate the culture medium and wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
3. Suspension cell: Transfer the culture medium to a pre-cooled centrifuge tube. Centrifuge and aspirate the supernatant. Wash the cells with ice-cold PBS twice. Lyse the cells by adding an appropriate volume of RIPA/NP-40 Lysis Buffer (containing Protease Inhibitor Cocktail) and put the sample on ice for 5 min.
4. Place the lysate into a pre-cooled microcentrifuge tube. Centrifuge at 4°C for 15 min. Collect the supernatant;
5. Remove a small volume of lysate to determine the protein concentration;
6. Combine the lysate with protein loading buffer. Boil 20 µL sample under 95-100°C for 5 min. Centrifuge for 5 min after cool down on ice.
 
Electrophoretic separation
1. According to the concentration of extracted protein, load appropriate amount of protein sample and marker onto SDS-PAGE gels for electrophoresis. Recommended separating gel (lower gel) concentration: 10%. Reference Table for Selecting SDS-PAGE Separation Gel Concentrations
2. Power up 80V for 30 minutes. Then the power supply is adjusted (110 V~150 V), the Marker is observed, and the electrophoresis can be stopped when the indicator band of the predyed protein Marker where the protein is located is properly separated. (Note that the current should not be too large when electrophoresis, too large current (more than 150 mA) will cause the temperature to rise, affecting the result of running glue. If high currents cannot be avoided, an ice bath can be used to cool the bath.)
 
Transfer membrane
1. Take out the converter, soak the clip and consumables in the pre-cooled converter;
2. Activate PVDF membrane with methanol for 1 min and rinse with transfer buffer;
3. Install it in the order of "black edge of clip - sponge - filter paper - filter paper - glue -PVDF membrane - filter paper - filter paper - sponge - white edge of clip";
4. The protein was electrotransferred to PVDF membrane. ( 0.45 µm PVDF membrane is recommended ) Reference Table for Selecting PVDF Membrane Pore Size Specifications
Recommended conditions for wet transfer: 200 mA, 120 min.
( Note that the transfer conditions can be adjusted according to the protein size. For high-molecular-weight proteins, a higher current and longer transfer time are recommended. However, ensure that the transfer tank remains at a low temperature to prevent gel melting.)
 
Block
1. After electrotransfer, wash the film with TBST at room temperature for 5 minutes;
2. Incubate the film in the blocking solution for 1 hour at room temperature;
3. Wash the film with TBST for 3 times, 5 minutes each time.
 
Antibody incubation
1. Use 5% skim milk powder to prepare the primary antibody working liquid (recommended dilution ratio for primary antibody 1:1000), gently shake and incubate with the film at 4°C overnight;
2. Wash the film with TBST 3 times, 5 minutes each time;
3. Add the secondary antibody to the blocking solution and incubate with the film gently at room temperature for 1 hour;
4. After incubation, wash the film with TBST 3 times for 5 minutes each time.
 
Antibody staining
1. Add the prepared ECL luminescent substrate (or select other color developing substrate according to the second antibody) and mix evenly;
2. Incubate with the film for 1 minute, remove excess substrate (keep the film moist), wrap with plastic film, and expose in the imaging system.
 
IF
Experimental Protocol:
 
Sample Preparation
1. Adherent Cells: Place a clean, sterile coverslip in a culture dish. Once the cells grow to near confluence as a monolayer, remove the coverslip for further use.
2. Suspension Cells: Seed the cells onto a clean, sterile slide coated with poly-L-lysine.
3. Frozen Sections: Allow the slide to thaw at room temperature. Wash it with pure water or PBS for 2 times, 3 minutes each time.
4. Paraffin Sections: Deparaffinization and rehydration. Wash the slide with pure water or PBS for 3 times, 3 minutes each time. Then perform antigen retrieval.
 
Fixation
1. Fix the cell coverslips/spots or tissue sections at room temperature using a fixative such as 4% paraformaldehyde (4% PFA) for 10-15 minutes.
2. Wash the sample with PBS for 3 times, 3 minutes each time.
 
Permeabilization
1.Add a detergent such as 0.1–0.3% Triton X-100 to the sample and incubate at room temperature for 10–20 minutes.
(Note: This step is only required for intracellular antigens. For antigens expressed on the cell membrane, this step is unnecessary.)
Wash the sample with PBS for 3 times, 3 minutes each time.
 
Blocking
Add blocking solution and incubate at room temperature for at least 1 hour. (Common blocking solutions include: serum from the same source as the secondary antibody, BSA, or goat serum.)
Note: Ensure the sample remains moist during and after the blocking step to prevent drying, which can lead to high background.
 
Immunofluorescence Staining (Day 1)
1. Remove the blocking solution and add the diluted primary antibody.
2. Incubate the sample in a humidified chamber at 4°C overnight.
 
Immunofluorescence Staining (Day 2)
1. Remove the primary antibody and wash with PBST for 3 times, 5 minutes each time.
2. Add the diluted fluorescent secondary antibody and incubate in the dark at 4°C for 1–2 hours.
3. Remove the secondary antibody and wash with PBST for 3 times, 5 minutes each time.
4. Add diluted DAPI and incubate at room temperature in the dark for 5–10 minutes.
5. Wash with PBST for 3 times, 5 minutes each time.
 
Mounting
1. Mount the sample with an anti-fade mounting medium.
2. Allow the slide to dry at room temperature overnight in the dark.
3. Store the slide in a slide storage box at 4°C, protected from light.

Datasheet & SDS

生物学的記述

Specificity

Acetyl-α-Tubulin (Lys40) Rabbit mAb detects endogenous levels of α-tubulin only when acetylated at Lys40. This amino acid is not conserved in β-tubulin. 

Synonym(s)
Acetylated Tubulin
Uniprot ID
P68363
Clone
C17M7
Background

Acetyl-α-tubulin (Lys40) is a post-translationally modified form of α-tubulin characterized by the acetylation of lysine 40, located on the luminal surface of microtubules. This modification, catalyzed by α-tubulin acetyltransferase 1 (αTAT1), occurs away from the binding sites of most microtubule-associated proteins (MAPs) and motors, but αTAT1 itself can interact with the microtubule’s exterior via the tubulin C-termini. Acetylation of α-tubulin at Lys40, with an approximate molecular weight of 52 kDa, increases microtubule stability, making them more resistant to depolymerization, which is critical for cytoskeletal integrity during cellular processes. This modification also affects interactions with MAPs, influencing cellular functions such as intracellular transport, cell motility, and neuronal development, including the branching of cortical neurons. Acetylation at Lys40, unique among tubulin modifications, enhances microtubule stability and plays a vital role in cellular physiology, particularly in neuronal function and structure. 

References

技術サポート

ストックの作り方、阻害剤の保管方法、細胞実験や動物実験の際に注意すべき点など、製品を取扱う時に問い合わせが多かった質問に対しては取扱説明書でお答えしています。

Handling Instructions

他に質問がある場合は、お気軽にお問い合わせください。

* 必須

大学・企業名を記入してください
名前を記入してください
電子メール・アドレスを記入してください 有効なメールアドレスを入力してください
お問い合わせ内容をご入力ください